2012, English, Book, Illustrated edition: Materials for a sustainable future / edited by Trevor M. Letcher, Janet L. Scott.

User activity

Share to:
Materials for a sustainable future / edited by Trevor M. Letcher, Janet L. Scott
Bookmark: https://trove.nla.gov.au/version/187513154
Physical Description
  • xxxvi, 791 p. : ill. ; 24 cm.
  • Cambridge : Royal Society of Chemistry, 2012.
  • English

Edition details

  • Materials for a sustainable future /​ edited by Trevor M. Letcher, Janet L. Scott.
Other Authors
  • Letcher, T. M. (Trevor M.)
  • Scott, Janet L., (Chemist)
  • Cambridge : Royal Society of Chemistry, 2012.
Content Types
  • text
Carrier Types
  • volume
Physical Description
  • xxxvi, 791 p. : ill. ; 24 cm.
  • "Aimed at students, lecturers, researchers, and policy makers, this work describes current developments and points the way forward for new developments regarding materials in our society and how they relate to sustainability." -- Provided by publisher.
  • Machine generated contents note: I.Elements That Could Soon Be in Short Supply
  • ch. 1 Base Metals /​ Zhehan Weng
  • 1.1.Introduction
  • 1.2.The Base Metals and Their Uses
  • 1.3.Brief Economic Geology and Mining of Base Metals
  • 1.3.1.Economic Geology and Major Mineral Deposit Types
  • 1.3.2.Mining and Metal Extraction
  • 1.3.3.Historical Production Trends
  • 1.4.Economic Resources of Copper, Lead-Zinc and Nickel
  • 1.4.1.Formal Reporting of Economic Ore Reserves and Mineral Resources
  • 1.4.2.Global Status of Base Metal Reserves: USGS Estimates
  • 1.4.3.Copper
  • 1.4.4.Lead-Zinc
  • 1.4.5.Nickel
  • 1.5.Statistics of Base Metal Mines Around the World
  • 1.5.1.Copper
  • 1.5.2.Lead-Zinc
  • 1.5.3.Nickel
  • 1.6.Sustainability Issues, Constraints and the Future of Base Metals
  • 1.6.1.Energy and Greenhouse Gas Emissions Intensity
  • 1.6.2.Other Ore Processing Issues
  • 1.6.3.Ocean Base Metal Resources?
  • 1.7.Conclusion
  • References
  • ch. 2 Rare Earths /​ Gareth P. Hatch
  • Contents note continued: 2.1.Introduction
  • 2.2.Applications and End Uses of Rare Earths
  • 2.3.Rare-Earth Minerals and Geology
  • 2.4.Mining and Processing of Rare Earths
  • 2.5.Rare-Earth Demand Drivers
  • 2.6.Rare Earth Supply Drivers
  • 2.7.Specific Supply and Demand Issues
  • 2.8.Rare-Earth Pricing
  • 2.9.Future Sources of Rare-Earth Supply
  • ch. 3 Gold /​ Julie L. Stacey
  • 3.1.Introduction and History
  • 3.1.1.Sustainable Development
  • 3.2.Why is Gold Special?
  • 3.3.The Uses of Gold
  • 3.3.1.Economics
  • 3.3.2.Engineering
  • 3.3.3.Industrial and Electronics
  • 3.3.4.Dental and Medical
  • 3.3.5.Jewellery
  • 3.4.How Much Gold Do We Use?
  • 3.5.Where and How is Gold Mined?
  • 3.5.1.Gold Production
  • 3.5.2.Mining Methods and Processes
  • 3.6.The Sustainability of Gold
  • 3.6.1.Issues of Sustainability in Gold Production
  • 3.6.2.Issues of Sustainability in Gold Use
  • 3.6.3.How Can Gold Contribute to Sustainable Development?
  • 3.7.Conclusion
  • Contents note continued: ch. 4 Platinum Group Metals /​ Gavin M. Mudd
  • 4.1.Introduction
  • 4.2.The Platinum Group Metals and Their Uses
  • 4.3.Brief Geology of Platinum Group Metals
  • 4.3.1.Principal Ore Types
  • 4.3.2.The Bushveld Complex, South Africa
  • 4.4.Economic Resources of Platinum Group Metals
  • 4.4.1.Reported Ore Reserves and Mineral Resources
  • 4.4.2.Comparison of Reserve Resource Estimates
  • 4.5.Platinum Group Metal Mines Around the World
  • 4.5.1.Overview
  • 4.5.2.Production Trends
  • 4.6.Sustainability Issues, Constraints and the Future of Platinum Group Metals
  • 4.7.Conclusion
  • ch. 5 Helium /​ Trevor M. Letcher
  • 5.1.Introduction
  • 5.2.Properties
  • 5.3.Isotopes
  • 5.4.Applications
  • 5.4.1.Cryogenics and MRI Scanners
  • 5.4.2.Pressurised Purging and the Space Programme
  • 5.4.3.Shield Gas for Welding
  • 5.4.4.Controlled Atmosphere
  • 5.4.5.Leak Detection
  • 5.4.6.Breathing Mixtures
  • 5.4.7.Airships and Balloons
  • Contents note continued: 5.4.8.Cooling and Condensing Other Gases to Liquids
  • 5.4.9.Lasers
  • 5.4.10.Party Balloons and the Donald Duck Voice
  • 5.4.11.Other Uses
  • 5.5.Substitutes for Helium
  • 5.6.Extraction of Helium from Oil Wells
  • 5.7.World Supply and Demand
  • 5.8.Conclusion
  • ch. 6 Phosphorus /​ Tina-Simone S. Neset
  • 6.1.Introduction
  • 6.2.Properties and Natural Cycles
  • 6.3.Applications
  • 6.3.1.Fertilisers
  • 6.3.2.Feed Additives
  • 6.3.3.Food Additives
  • 6.3.4.Detergents
  • 6.3.5.Pyrotechnic and Military Applications
  • 6.3.6.Industrial Applications
  • 6.3.7.Phosphate-Lithium Batteries
  • 6.4.Global Phosphorus Reserves
  • 6.5.Industrial Mining of Phosphorus
  • 6.5.1.Global Production and Consumption
  • 6.5.2.Pollution
  • 6.6.Alternative Sources and Sustainable Pathways
  • 6.7.Conclusion
  • ch. 7 Uranium /​ Gavin M. Mudd
  • 7.1.Introduction
  • 77.2.Uranium and Its Uses
  • 7.3.Brief History of Uranium
  • Contents note continued: 7.4.Economic Resources of Uranium
  • 7.4.1.Basic Geology of Uranium and Deposit Types
  • 7.4.2.Economic Uranium Resources
  • 7.5.Uranium Mines Around the World
  • 7.5.1.Overview
  • 7.5.2.Brief Review of Uranium Ore Mining and Milling
  • 7.5.3.Statistics of Current Uranium Mines
  • 7.6.Sustainability Issues, Constraints and the Future of Uranium
  • 7.6.1.Projections of Nuclear Power
  • 7.6.2.Energy and Greenhouse Gas Emissions Intensity of Mining
  • 7.6.3.Uranium Mine Rehabilitation - Some Key Issues
  • 7.7.Conclusion
  • II.Sustainability Related to Biomass
  • ch. 8 Aquatic Biomass for the Production of Fuels and Chemicals /​ Antonella Colucci
  • 8.1.Introduction
  • 8.2.The Aquatic Biomass: Macro-algae, Micro-algae and Plants
  • 8.2.1.Micro-algae
  • 8.2.2.Macro-algae
  • 8.2.3.Aquatic Plants
  • 8.3.Harvesting of Aquatic Biomass
  • 8.4.Aquatic Biomass Composition
  • 8.4.1.Extraction Techniques
  • 8.5.Energy Products
  • Contents note continued: 8.5.1.Bio-oil Production
  • 8.5.2.Production of Bioalcohol
  • 8.5.3.Production of Biogas and Biomethane
  • 8.5.4.Production of Materials
  • 8.6.Conclusion
  • ch. 9 Chemicals from Sugarcane /​ Yara Csordas
  • 9.1.Introduction
  • 9.2.Chemicals from Sucrose and Ethanol
  • 9.2.1.Esters from Sucrose and Molasses
  • 9.2.2.Sucrose-based Food Ingredients
  • 9.3.Carboxylic Acids
  • 9.4.Ethers and Sucrogels
  • 9.5.Chemicals from Bagasse
  • 9.6.CO2: from Exhaust to the Market
  • 9.7.From Ashes to New Raw Materials
  • 9.8.Conclusion
  • Acknowledgements
  • ch. 10 Chemicals from Biomass /​ Gianfranco Unali
  • 10.1.Introduction
  • 10.1.1.Sources of Biomass and the Biorefinery Concept
  • 10.1.2.Bio-based/​Renewable/​Sustainable
  • 10.1.3.Scope
  • 10.2.Bio-based Platform Chemicals
  • 10.2.1.Platform Chemicals from Carbohydrates
  • 10.2.2.Chemicals from Lignin
  • 10.2.3.Chemicals from Fats and Oils
  • 10.2.4.Chemicals from Glycerol
  • Contents note continued: 10.2.5.Chemicals from Proteins and Other High-value Products
  • 10.3.The Reductionist Approach Versus Using Nature's Complexity
  • 10.4.Bio-based Chemicals Based on Chemical Type and Application
  • 10.4.1.Solvents
  • 10.4.2.Surfactants
  • 10.5.Conclusion
  • III.Sustainability Related to Feedstocks - CH4 and CO2
  • ch. 11 Methane for Transportation Fuel and Chemical Production /​ Vinay Prasad
  • 11.1.Introduction
  • 11.1.1.Sustainability
  • 11.2.Natural Sources of Methane
  • 11.2.1.Production of Natural Gas
  • 11.2.2.Composition of Natural Gas
  • 11.3.Transportation Fuels
  • 11.3.1.Spark Ignition Engine Fuel
  • 11.3.2.Compression Ignition Engine Fuel
  • 11.3.3.Turbine Fuel
  • 11.3.4.Production of Transportation Fuels
  • 11.4.Industrial Gas-to-Liquids (GTL) Technologies
  • 11.4.1.Liquefied Natural Gas Production
  • 11.4.2.Industrial GTL Methanol Production
  • 11.4.3.Industrial GTL Fischer-Tropsch Production
  • Contents note continued: 11.5.Synthesis Gas Production from Natural Gas
  • 11.5.1.Natural Gas Pretreatment and Pre-reforming
  • 11.5.2.Steam Reforming
  • 11.5.3.Partial Oxidation
  • 11.5.4.Autothermal Reforming
  • 11.5.5.Water Gas Shift Conditioning
  • 11.6.Synthesis Gas Conversion Technologies
  • 11.6.1.Methanol Synthesis
  • 11.6.2.Fischer-Tropsch Synthesis
  • 11.7.Refining to Commercial Transportation Fuels
  • 11.7.1.Methanol Refining to Transportation Fuels
  • 11.7.2.Fischer-Tropsch Syncrude Refining to Transportation Fuels
  • 11.8.Petrochemicals and Lubricants from Methane
  • 11.8.1.Petrochemicals via Synthesis Gas
  • 11.8.2.Petrochemicals and Lubricants via Methanol Synthesis
  • 11.8.3.Petrochemicals and Lubricants via Fischer-Tropsch Synthesis
  • 11.8.4.Petrochemicals from Direct Oxidative Coupling of Methane
  • 11.8.5.Petrochemicals from Direct Methane Sulfurisation
  • 11.8.6.Petrochemicals from Direct Methane Halogenation and Related Reactions
  • Contents note continued: 11.8.7.Petrochemicals from Direct Methane Conversion with NH3 and HNO3
  • 11.9.Natural Gas Use for a Sustainable Future
  • ch. 12 Carbon Capture: Materials and Process Engineering /​ Geoffrey C. Maitland
  • 12.1.Introduction
  • 12.2.Carbon Capture Overview
  • 12.3.Carbon Capture Processes and Materials
  • 12.3.1.Liquid-based Capture Processes
  • 12.3.2.Solid Sorbents
  • 12.3.3.Other Separation Techniques
  • 12.4.Integration of Capture Processes and Materials with CO2 Source Processes
  • 12.4.1.Integration of CO2 Capture Plant with Power Production
  • 12.4.2.Integration of CO2 Capture Plant with Industrial Processes
  • 12.4.3.Network Design and Operation
  • 12.5.Conclusion
  • ch. 13 Carbon Dioxide Utilisation in the Production of Chemicals, Fuels and Materials /​ Paolo Stufano
  • 13.1.Introduction
  • 13.2.Carbonates
  • 13.2.1.Organic Molecular Compounds
  • Contents note continued: 13.2.2.CO2 as Comonomer in the Synthesis of Polycarbonates
  • 13.3.Carbamates
  • 13.3.1.Synthesis of Molecular Carbamates
  • 13.3.2.Production of Polyurethanes
  • 13.4.The Energy Issue in the Production of Fuels from CO2
  • 13.4.1.CO2 Conversion into Fuels as a Store of Electrical Energy
  • 13.4.2.The Direct Reduction of CO2 to Fuels in Water
  • 13.5.Other Monomers Produced from CO2
  • 13.5.1.Urea
  • 13.5.2.Olefins
  • 13.5.3.Enhanced Fixation into Aquatic Biomass
  • 13.6.Production of Inorganic Carbonates
  • 13.7.Conclusion
  • ch. 14 Carbon Dioxide in the Manufacture of Plastics /​ Matthew D. Jones
  • 14.1.Introduction
  • 14.2.Polymers
  • 14.3.Initiator Systems
  • 14.3.1.Cobalt Initiators
  • 14.3.2.Chromium Initiators
  • 14.3.3.Zinc Initiators
  • 14.3.4.Ambient-pressure Initiators
  • 14.4.Other Epoxides
  • 14.5.Other Polymeric Materials
  • 14.6.Conclusion
  • Contents note continued: ch. 15 Carbon Dioxide as a Sustainable Industrial Solvent to Replace Organic Solvents /​ Marie Warren
  • 15.1.Introduction
  • 15.1.1.The Supercritical State
  • 15.2.Extraction
  • 15.2.1.Extraction of Natural Substances
  • 15.2.2.Cleaning and Purification
  • 15.2.3.Decaffeination of Coffee and Tea
  • 15.3.Impregnation
  • 15.3.1.Textile Dyeing
  • 15.3.2.Wood Impregnation
  • 15.4.Reactions in Carbon Dioxide
  • 15.4.1.Hydrogenation
  • 15.4.2.Polymer Synthesis
  • 15.5.Carbon Dioxide as a Process Aid
  • 15.5.1.Polymer Foaming and Modification
  • 15.5.2.Particle Production
  • 15.6.Future Trends
  • 15.6.1.Tanning of Leather
  • 15.6.2.Medical Applications
  • 15.6.3.Polymer Synthesis - New Opportunities
  • 15.7.Conclusion
  • IV.Materials Related to Energy Conversion, Storage and Distribution
  • ch. 16 Battery and Fuel Cell Materials /​ Tanja Kallio
  • 16.1.Introduction
  • 16.2.Rechargeable Lithium Ion Battery Materials
  • Contents note continued: 16.3.Fuel Cell Components and Recyclability
  • 16.4.Durability Issues with Fuel Cell Materials
  • 16.5.Fuels for Fuel Cells
  • 16.6.Discussion
  • 16.7.Conclusion
  • ch. 17 Materials for Photovoltaics /​ Laurence M. Peter
  • 17.1.Introduction
  • 17.2.Efficiency Limits for Photovoltaic Solar Energy Conversion
  • 17.3.Overview of Current PV Technology
  • 17.3.1.Mono-/​Multicrystalline Silicon Solar Cells
  • 17.3.2.CdTe Thin-film Solar Cells
  • 17.3.3.CIGS Thin-film Cells
  • 17.4.Emerging PV Technologies
  • 17.4.1.Dye-sensitised Solar Cells
  • 17.4.2.Bulk Heterojunction Organic Cells
  • 17.5.Efficiency Records in the Laboratory
  • 17.6.Life Cycle Analysis, Energy Balance and CO2 Footprint of PV
  • 17.7.Resource Implications of Large-scale Deployment of PV
  • 17.8.Logistic Growth Model for Estimation of Resource Requirements for PV
  • 17.9.Outlook and Conclusion
  • ch. 18 Materials for Water Splitting /​ Leroy Cronin
  • Contents note continued: 18.1.Introduction and Scope
  • 18.2.Water Splitting by Electrolysis
  • 18.2.1.Fundamentals
  • 18.2.2.Electrolytic Water Oxidation on Cobalt Oxophosphates (CoPi)
  • 18.2.3.Electrolytic Water Oxidation on Manganese Oxides
  • 18.2.4.Other Electrocatalysts for Water Oxidation
  • 18.2.5.Electrolytic Proton Reduction on Molybdenum Sulfides
  • 18.2.6.Electrolytic Hydrogen Production Under Basic Conditions
  • 18.3.Photocatalytic Water Splitting
  • 18.3.1.Basic Concepts
  • 18.3.2.Photocatalytic Water Oxidation
  • 18.3.3.Photocatalytic Hydrogen Evolution
  • 18.3.4.Overall Water Splitting in Photocatalytic Cells Using Only Light
  • 18.4.Conclusion and Outlook
  • V.Sustainability Related to Materials in the Urban Environment and to Water
  • ch. 19 Materials Used in Membranes for Water Purification and Recycling /​ Renbi Bai
  • 19.1.Introduction to Membrane Technology
  • 19.2.Polymeric Materials for Membrane Fabrication
  • Contents note continued: 19.2.1.MF/​UF Membrane Materials
  • 19.2.2.NF/​RO Membrane Materials
  • 19.2.3.Ion-exchange Membrane Materials
  • 19.2.4.Composite Membrane (Top-layer) Formation
  • 19.3.Polymeric Material Modifications
  • 19.3.1.Bulk Modifications
  • 19.3.2.Surface Modifications
  • 19.4.Inorganic Materials for Membrane Fabrication
  • ch. 20 Glass and New Technologies /​ Ivan P. Parkin
  • 20.1.Introduction
  • 20.2.Low-emissivity Coatings
  • 20.3.Intelligent Window Coatings
  • 20.3.1.Electrochromic Windows
  • 20.3.2.Thermochromic Windows
  • 20.3.3.Photochromic Glass
  • 20.4.Anti-friction Coatings
  • 20.5.Self-cleaning Coatings
  • 20.6.Water-repellent Windows
  • 20.7.Anti-fogging Coatings
  • 20.8.Privacy Coatings
  • 20.9.Thin-film Photovoltaic Windows
  • 20.10.Conclusion
  • ch. 21 Sustainable Materials in Building and Architecture /​ Naa Lamkai Ampofo-Anti
  • 21.1.Introduction
  • 21.2.Global Industry Trends
  • Contents note continued: 21.3.Background and Context to Sustainable Building and Construction
  • 21.4.Bulk Construction Material Resource Reserves
  • 21.5.Threats Facing the Bulk Construction Material Sector
  • 21.5.1.Embodied Energy
  • 21.5.2.Embodied Water
  • 21.5.3.Embodied Toxicity
  • 21.6.A Five-pillared Approach to Construction Materials
  • 21.6.1.Optimise Existing Technologies
  • 21.6.2.Integrate Environmentally Sound Fringe Technologies into Mainstream Technologies
  • 21.6.3.Accelerate Hybrid Technologies into Mainstream Technologies
  • 21.6.4.Develop Biotechnology Applications
  • 21.6.5.Develop Nanotechnology Applications
  • 21.7.Trends
  • 21.7.1.Trends in Conventional Bulk Construction Materials
  • 21.7.2.Trends in Bio-based Construction Materials
  • 21.7.3.Agricultural Crop Products
  • 21.8.Conclusion
  • ch. 22 Biomass in Composite Materials /​ Wim Thielemans
  • 22.1.Introduction
  • 22.2.Bio-based Polymers
  • 22.2.1.Polysaccharides
  • 22.2.2.Lignin
  • Contents note continued: 22.2.3.Plant Oils
  • 22.2.4.Polyhydroxyalkanoates
  • 22.2.5.Polylactic Acid
  • 22.2.6.Natural Rubber
  • 22.3.Reinforcements
  • 22.3.1.Fibre Reinforcement
  • 22.3.2.Cellulosic Fibres
  • 22.3.3.Starch Composites
  • 22.4.Other Natural Fibres-Reinforcements
  • 22.5.Conclusion
  • References.
  • Formerly CIP.
  • Includes bibliographical references and index.
  • English
  • 9781849734073 (hbk.) :
  • 1849734070 (hbk.) :
Dewey Number
  • 620.11
Libraries Australia ID
Contributed by
Libraries Australia

Get this edition

Freely available

  • Set up My libraries

    How do I set up "My libraries"?

    In order to set up a list of libraries that you have access to, you must first login or sign up. Then set up a personal list of libraries from your profile page by clicking on your user name at the top right of any screen.

  • All (4)
  • NSW (2)
  • VIC (1)
  • WA (1)
None of your libraries hold this item.

These 4 locations in All:

Library Access Call number(s) Formats held Language
Edith Cowan University. Edith Cowan University Library. Open to the public Book; Illustrated English
Monash University. Monash University Library. Open to the public 99329699601751; 620.11 L645M 2012; HA; GEN Book; Illustrated English
University of Newcastle Library. Open to the public Book; Illustrated English
Western Sydney University. Penrith Campus Library. Open to the public 9922939980001571; HELD Book; Illustrated English
Show 0 more libraries...
None of your libraries hold this item.

These 2 locations in New South Wales:

Library Access Call number(s) Formats held Language
University of Newcastle Library. Open to the public Book; Illustrated English
Western Sydney University. Penrith Campus Library. Open to the public 9922939980001571; HELD Book; Illustrated English
Show 0 more libraries...
None of your libraries hold this item.
None of your libraries hold this item.
None of your libraries hold this item.
None of your libraries hold this item.

This single location in Victoria:

Library Access Call number(s) Formats held Language
Monash University. Monash University Library. Open to the public 99329699601751; 620.11 L645M 2012; HA; GEN Book; Illustrated English
Show 0 more libraries...
None of your libraries hold this item.

Found at these bookshops

Searching - please wait...

You also may like to try some of these bookshops, which may or may not sell this item.

User activity

e.g. test cricket, Perth (WA), "Parkes, Henry"

Separate different tags with a comma. To include a comma in your tag, surround the tag with double quotes.

Be the first to add a tag for this edition

Be the first to add this to a list

Comments and reviews

What are comments? Add a comment

No user comments or reviews for this version

Add a comment