2005, English, Thesis edition: Phase Coexistence in Manganites Chapman, James Christopher

User activity

Share to:
 
Bookmark: http://trove.nla.gov.au/version/70551
Physical Description
  • 6817847 bytes, application/​pdf
  • Thesis
Published
  • 2005-07-27T16:35:38Z
  • 2005-04
Language
  • English

Edition details

Title
  • Phase Coexistence in Manganites
Author
  • Chapman, James Christopher
Published
  • 2005-07-27T16:35:38Z
  • 2005-04
Physical Description
  • 6817847 bytes, application/​pdf
  • Thesis
Subjects
Notes
  • The doped perovskite manganite La1-xCaxMnO3 (0<x<1) has been extensively studied due to the interactions between the electronic, magnetic and crystal lattices, and the wide range of phases that can coexist. The region of greatest interest in the bulk material is around x~0.5, where there is often mesoscopic phase coexistence between a ferromagnetic metal (FM) and an antiferromagnetic insulator (AF).The first part of the dissertation describes a systematic study on a series of La1-xCaxMnO3 films deposited onto SrTiO3 (001) by pulsed laser deposition with compositions in the range 0.40<x<0.45. From electrical transport and magnetisation measurements, the limit of metallic behaviour was found to be x=​0.41 whereas ferromagnetism was seen up to x=​0.45. Although the transition temperatures of 150-200 K were comparable with the bulk material, the saturation moment at 20 K was about 40% of the fully spin-aligned value, which suggests the possibility of a phase separated mixture of FM and AF regions. The deviation from the bulk behaviour is thought to be due to substrate-induced strain altering the crystal symmetry and making the cubic ferromagnetic state less favourable.In the remainder of this work, the nature of phase separation in 60 nm La0.59Ca0.41MnO3 and La0.60Ca0.40MnO3 films is investigated. The effect of an external magnetic field is studied. A high-field magnetoresistance (∆ρ/​ρB=​0) of 41% in fields of 400 mT was observed for a La0.60Ca0.40MnO3 film, which, while not as large as the values previously reported in the literature, is still significant. The magnetic history of the films was found to be very significant, with the zero-field resistivity depending on the highest field applied. The isothermal time dependence of the resistivity was found to be exponential, with a time constant in the range 100-1000 s. Possible mechanisms for the MR effect and the dependence on magnetic history are discussed.
  • EPSRC
Language
  • English
Contributed by
OAIster

Get this edition

  • Set up My libraries

    How do I set up "My libraries"?

    In order to set up a list of libraries that you have access to, you must first login or sign up. Then set up a personal list of libraries from your profile page by clicking on your user name at the top right of any screen.

  • All (1)
  • Unknown (1)
None of your libraries hold this item.
None of your libraries hold this item.
None of your libraries hold this item.
None of your libraries hold this item.
None of your libraries hold this item.
None of your libraries hold this item.
None of your libraries hold this item.
None of your libraries hold this item.

User activity


e.g. test cricket, Perth (WA), "Parkes, Henry"

Separate different tags with a comma. To include a comma in your tag, surround the tag with double quotes.

Be the first to add a tag for this edition

Be the first to add this to a list

Comments and reviews

What are comments? Add a comment

No user comments or reviews for this version

Add a comment