2005, 1998, English, Thesis edition: Quasiparticle and Phonon Transport in Superconducting Particle Detectors Burnell, Gavin

User activity

Share to:
 
Bookmark: http://trove.nla.gov.au/version/70499
Physical Description
  • 5632260 bytes, application/​pdf
  • Thesis
Published
  • 2005-06-10T13:42:03Z
  • 1998-08
Language
  • English

Edition details

Title
  • Quasiparticle and Phonon Transport in Superconducting Particle Detectors
Author
  • Burnell, Gavin
Published
  • 2005-06-10T13:42:03Z
  • 1998-08
Physical Description
  • 5632260 bytes, application/​pdf
  • Thesis
Subjects
Notes
  • For over a decade now there has been much research into the use of superconductors in X-ray, gamma ray and other particle detectors. Detectors based on superconductor-insulator-superconductor(SIS) and superconductor-insulator-normal metal(SIN) tunnel junctions have been widely developed. To date, the predicted excellent energy resolving ability of such detectors has not been realised. Various energy loss processes have been suggested as possible causes for the failure to obtain energy resolutions close to the thermodynamic and quantum limits predicted.In my experiments, I have used both SIS and SIN tunnel junctions to investigate the transport of quasiparticles and phonons in structures similar to the proposed detector designs. I have used multiple distributed junction geometries to perform injection-detection type experiments. One junction is used to inject quasiparticles and/​or phonons into the device structure, whilst the current-voltage characteristic of a second junction is monitored for a response to the injected quasiparticles/​phonons.Using this type of experimental set-up, I have measured the transport of non-thermal equilibrium quasiparticles in an epitaxial niobium film. Using a simple random walk model, I have calculated an effective lifetime for quasiparticles. I have not observed the process of quasiparticle mulitiplication that has been observed by other researchers - I attribute this to differences in the microstructure of my devices and comment on the implications of this to possible quasiparticle loss mechanisms.I have investigated the energy transport in a device with a number of SIN tunnel junctions connected to a common normal metal electrode. Phonon transport via the substrate is found to be the dominant coupling process between the tunnel junctions, although the device design can result in some junctions being effectively shielded from the substrate phonons by the common electrode.Finally, the possibilities of using a superconducting heterostructure to control the rate at which quasiparticles recombine and emit phonons have been explored. Excessive recombination is believed to limit the effectiveness of large areas SIN tunnel junctions as thermometers for particle detecting bolometers.
  • Office of Naval Research (US)
  • Materials Science and Metallurgy, University of Cambridge 1998
Language
  • English
Contributed by
OAIster

Get this edition

  • Set up My libraries

    How do I set up "My libraries"?

    In order to set up a list of libraries that you have access to, you must first login or sign up. Then set up a personal list of libraries from your profile page by clicking on your user name at the top right of any screen.

  • All (1)
  • Unknown (1)
None of your libraries hold this item.
None of your libraries hold this item.
None of your libraries hold this item.
None of your libraries hold this item.
None of your libraries hold this item.
None of your libraries hold this item.
None of your libraries hold this item.
None of your libraries hold this item.

User activity


e.g. test cricket, Perth (WA), "Parkes, Henry"

Separate different tags with a comma. To include a comma in your tag, surround the tag with double quotes.

Be the first to add a tag for this edition

Be the first to add this to a list

Comments and reviews

What are comments? Add a comment

No user comments or reviews for this version

Add a comment