English, Article edition: Identifying Future High-Healthcare Users: Exploring the Value of Diagnostic and Prior Utilization Information Amy K. Rosen; Fei Wang; Maria E. Montez; ...

User activity

Share to:
 
Bookmark: http://trove.nla.gov.au/version/46652
Physical Description
  • article
Language
  • English

Edition details

Title
  • Identifying Future High-Healthcare Users: Exploring the Value of Diagnostic and Prior Utilization Information
Author
  • Amy K. Rosen
  • Fei Wang
  • Maria E. Montez
  • Carter C. Rakovski
  • Dan R. Berlowitz
  • Jaime C. Lucove
Physical Description
  • article
Notes
  • Objective: Diagnosis-based risk-adjustment measures are increasingly being promoted as disease management tools. We compared the ability of several types of predictive models to identify future high-risk older people likely to benefit from disease management. Study design: Veterans Health Administration (VHA) data were used to identify veterans >=​65 years of age who used healthcare services during fiscal years (FY) 1997 and 1998 and who remained alive through FY 1997. This yielded a development sample of 412_679 individuals and a validation sample of 207_294. Methods: Prospective risk-adjustment models were fitted and tested using Adjusted Clinical Groups (ACGs), Diagnostic Cost Groups (DCGs), a prior-utilization model (prior), and combined models (prior + ACGs and prior + DCGs). Prespecified high use in FY 1998 was defined as >=​92 days of care (top 2.2%) for an individual (i.e. the number of days during the year in which an individual received inpatient or outpatient healthcare services). We developed a second outcome, defined as >=​164 days of care (top 1.0%), to explore whether changing the criterion for high risk would affect the number of misclassifications. Results: The diagnosis-based models performed better than the prior model in identifying a subgroup of future high-cost individuals with high disease burden and chronic diseases appropriate for disease management. The combined models performed best at correctly classifying those without high use in the prospective year. The utility for efficiently identifying high-risk cases appeared limited because of the high number of individuals misclassified as future high-risk cases by all the models. Changing the criterion for high risk generally decreased the number of patients misclassified. There was little agreement between the models regarding who was identified as high risk. Conclusion: Health plans should be aware that different risk-adjustment measures may select dissimilar groups of individuals for disease management. Although diagnosis-based measures show potential as predictive modeling tools, combining a diagnosis-based measure with prior-utilization model may yield the best results.
  • Modelling, Resource-use, Statistics
  • RePEc:wkh:dmhout:v:13:y:2005:i:2:p:117-127
Language
  • English
Contributed by
OAIster

Get this edition

  • Set up My libraries

    How do I set up "My libraries"?

    In order to set up a list of libraries that you have access to, you must first login or sign up. Then set up a personal list of libraries from your profile page by clicking on your user name at the top right of any screen.

  • All (1)
  • Unknown (1)
None of your libraries hold this item.
None of your libraries hold this item.
None of your libraries hold this item.
None of your libraries hold this item.
None of your libraries hold this item.
None of your libraries hold this item.
None of your libraries hold this item.
None of your libraries hold this item.

User activity


e.g. test cricket, Perth (WA), "Parkes, Henry"

Separate different tags with a comma. To include a comma in your tag, surround the tag with double quotes.

Be the first to add a tag for this edition

Be the first to add this to a list

Comments and reviews

What are comments? Add a comment

No user comments or reviews for this version

Add a comment