English, Article, Journal or magazine article edition: Space-Time Forecasting Using Soft Geostatistics: A Case Study in Forecasting Municipal Water Demand for Phoenix, AZ (2008#4) Seung-Jae Lee; Elizabeth A. Wentz; Patricia Gober

User activity

Share to:
 
Bookmark: http://trove.nla.gov.au/version/42670
Physical Description
  • preprint
Language
  • English

Edition details

Title
  • Space-Time Forecasting Using Soft Geostatistics: A Case Study in Forecasting Municipal Water Demand for Phoenix, AZ (2008#4)
Author
  • Seung-Jae Lee
  • Elizabeth A. Wentz
  • Patricia Gober
Physical Description
  • preprint
Notes
  • Managing environmental and social systems in the face of uncertainty requires the best possible forecasts of future conditions. We use space-time variability in historical data and projections of future population density to improve forecasting of residential water demand in the City of Phoenix, Arizona. Our future water estimates are derived using the first and second order statistical moments between a dependent variable, water use, and an independent variable, population density. The independent variable is projected at future points, and remains uncertain. We use adjusted statistical moments that cover projection errors in the independent variable, and propose a methodology to generate information-rich future estimates. These updated estimates are processed in Bayesian Maximum Entropy (BME), which produces maps of estimated water use to the year 2030. Integrating the uncertain estimates into the space-time forecasting process improves forecasting accuracy up to 43.9% over other space-time mapping methods that do not assimilate the uncertain estimates. Further validation studies reveal that BME is more accurate than co-kriging that integrates the error-free independent variable, but shows similar accuracy to kriging with measurement error that processes the uncertain estimates. Our proposed forecasting method benefits from the uncertain estimates of the future, provides up-to-date forecasts of water use, and can be adapted to other socioeconomic and environmental applications.
  • water use, forecasting, soft data, statistical moments, Bayesian Maximum Entropy
  • RePEc:asg:wpaper:2008-4
Language
  • English
Contributed by
OAIster

Get this edition

Other links

  • Set up My libraries

    How do I set up "My libraries"?

    In order to set up a list of libraries that you have access to, you must first login or sign up. Then set up a personal list of libraries from your profile page by clicking on your user name at the top right of any screen.

  • All (1)
  • Unknown (1)
None of your libraries hold this item.
None of your libraries hold this item.
None of your libraries hold this item.
None of your libraries hold this item.
None of your libraries hold this item.
None of your libraries hold this item.
None of your libraries hold this item.
None of your libraries hold this item.

User activity


e.g. test cricket, Perth (WA), "Parkes, Henry"

Separate different tags with a comma. To include a comma in your tag, surround the tag with double quotes.

Be the first to add a tag for this edition

Be the first to add this to a list

Comments and reviews

What are comments? Add a comment

No user comments or reviews for this version

Add a comment