English, Article, Journal or magazine article edition: Robustifying Learnability Peter von zur Muehlen; Robert J. Tetlow

User activity

Share to:
 
Bookmark: http://trove.nla.gov.au/version/30227
Physical Description
  • preprint
Language
  • English

Edition details

Title
  • Robustifying Learnability
Author
  • Peter von zur Muehlen
  • Robert J. Tetlow
Physical Description
  • preprint
Notes
  • monetary policy, learnability, indeterminacy, robust control
  • RePEc:red:sed006:439
  • Robust control ; Monetary policy
  • RePEc:fip:fedgfe:2005-58
  • In recent years, the learnability of rational expectations equilibria (REE) and determinacy of economic structures have rightfully joined the usual performance criteria among the sought-after goals of policy design. Some contributions to the literature, including Bullard and Mitra (2001) and Evans and Honkapohja (2002), have made significant headway in establishing certain features of monetary policy rules that facilitate learning. However a treatment of policy design for learnability in worlds where agents have potentially misspecified their learning models has yet to surface. This paper provides such a treatment. We begin with the notion that because the profession has yet to settle on a consensus model of the economy, it is unreasonable to expect private agents to have collective rational expectations. We assume that agents have only an approximate understanding of the workings of the economy and that their learning the reduced forms of the economy is subject to potentially destabilizing perturbations. The issue is then whether a central bank can design policy to account for perturbations and still assure the learnability of the model. Our test case is the standard New Keynesian business cycle model. For different parameterizations of a given policy rule, we use structured singular value analysis (from robust control theory) to find the largest ranges of misspecifications that can be tolerated in a learning model without compromising convergence to an REE. In addition, we study the cost, in terms of performance in the steady state of a central bank that acts to robustify learnability on the transition path to REE. JEL Classification: C6; E5.
  • monetary policy; learning, E-stability; learnability; robust control.
  • RePEc:ecb:ecbwps:20060593
  • In recent years, the learnability of rational expectations equilibria (REE) and determinacy of economic structures have rightfully joined the usual performance criteria among the sought after goals of policy design. And while some contributions to the literature (for example Bullard and Mitra (2001) and Evans and Honkapohja (2002)) have made significant headway in establishing certain features of monetary policy rules that facilitate learning, a comprehensive treatment of policy design for learnability has yet to surface, especially for cases in which agents have potentially misspecified their learning models. This paper provides such a treatment. We argue that since even among professional economists a generally acceptable workhorse model of the economy has not been agreed upon, it is unreasonable to expect private agents to have collective rational expectations. We assume instead that agents have an approximate understanding of the workings of the economy and that their task of learning true reduced forms of the economy is subject to potentially destabilizing errors. We then ask: can a central bank set policy that accounts for learning errors but also succeeds in bounding them in a way that allows eventual learnability of the model, given policy. For different parameterizations of a given policy rule applied to a New Keynesian model, we use structured singular value analysis (from robust control) to find the largest ranges of misspecifications that can be tolerated in a learning model without compromising convergence to an REE. A parallel set of experiments seeks to determine the optimal stance (strong inflation as opposed to strong output stabilization) that allows for the greatest scope of errors in learning without leading to expectational instabilty in cases when the central bank designs both optimal and robust policy rules with commitment. We compare the features of all the rules contemplated in the paper with those that maximize economic performance in the true model, and we measure the performance cost of maximizing learnability under the various conditions mentioned here.
  • monetary policy, learning, E-stability, model uncertainty, robustness
  • RePEc:sce:scecf5:437
Language
  • English
Contributed by
OAIster

Get this edition

  • Set up My libraries

    How do I set up "My libraries"?

    In order to set up a list of libraries that you have access to, you must first login or sign up. Then set up a personal list of libraries from your profile page by clicking on your user name at the top right of any screen.

  • All (1)
  • Unknown (1)
None of your libraries hold this item.
None of your libraries hold this item.
None of your libraries hold this item.
None of your libraries hold this item.
None of your libraries hold this item.
None of your libraries hold this item.
None of your libraries hold this item.
None of your libraries hold this item.

User activity


e.g. test cricket, Perth (WA), "Parkes, Henry"

Separate different tags with a comma. To include a comma in your tag, surround the tag with double quotes.

Be the first to add a tag for this edition

Be the first to add this to a list

Comments and reviews

What are comments? Add a comment

No user comments or reviews for this version

Add a comment