English, Article, Journal or magazine article edition: Endogenous Network Dynamics Frank H. Page, Jr.; Myrna H. Wooders

User activity

Share to:
 
Bookmark: http://trove.nla.gov.au/version/24162
Physical Description
  • preprint
Language
  • English

Edition details

Title
  • Endogenous Network Dynamics
Author
  • Frank H. Page, Jr.
  • Myrna H. Wooders
Physical Description
  • preprint
Notes
  • In all social and economic interactions, individuals or coalitions choose not only with whom to interact but how to interact, and over time both the structure (the “with whom”) and the strategy (“the how”) of interactions change. Our objectives here are to model the structure and strategy of interactions prevailing at any point in time as a directed network and to address the following open question in the theory of social and economic network formation: given the rules of network and coalition formation, the preferences of individuals over networks, the strategic behavior of coalitions in forming networks, and the trembles of nature, what network and coalitional dynamics are likely to emerge and persist. Our main contributions are (i) to formulate the problem of network and coalition formation as a dynamic, stochastic game, (ii) to show that this game possesses a stationary correlated equilibrium (in network and coalition formation strategies), (iii) to show that, together with the trembles of nature, this stationary correlated equilibrium determines an equilibrium Markov process of network and coalition formation, and (iv) to show that this endogenous process possesses a finite, nonempty set of ergodic measures, and generates a finite, disjoint collection of nonempty subsets of networks and coalitions, each constituting a basin of attraction. We also extend to the setting of endogenous Markov dynamics the notions of pairwise stability (Jackson-Wolinsky, 1996), strong stability (Jacksonvan den Nouweland, 2005), and Nash stability (Bala-Goyal, 2000), and we show that in order for any network-coalition pair to persist and be stable (pairwise, strong, or Nash) it is necessary and sufficient that the pair reside in one of finitely many basins of attraction. The results we obtain here for endogenous network dynamics and stochastic basins of attraction are the dynamic analogs of our earlier results on endogenous network formation and strategic basins of attraction in static, abstract games of network formation (Page and Wooders, 2008), and build on the seminal contributions of Jackson and Watts (2002), Konishi and Ray (2003), and Dutta, Ghosal, and Ray (2005).
  • Endogenous Network Dynamics, Dynamic Stochastic Games of Network Formation, Equilibrium Markov Process of Network Formation, Basins of Attraction, Harris Decomposition, Ergodic Probability Measures, Dynamic Path Dominance Core, Dynamic Pairwise Stability
  • RePEc:fem:femwpa:2009.28
  • In all social and economic interactions, individuals or coalitions choose not only with whom to interact but how to interact, and over time both the structure (the “with whom”) and the strategy (“the how”) of interactions change. Our objectives here are to model the structure and strategy of interactions prevailing at any point in time as a directed network and to address the following open question in the theory of social and economic network formation: given the rules of network and coalition formation, the preferences of individuals over networks, the strategic behavior of coalitions in forming networks, and the trembles of nature, what network and coalitional dynamics are likely to emergence and persist. Our main contributions are (i) to formulate the problem of network and coalition formation as a dynamic, stochastic game, (ii) to show that this game possesses a stationary correlated equilibrium (in network and coalition formation strategies), (iii) to show that, together with the trembles of nature, this stationary correlated equilibrium determines an equilibrium Markov process of network and coalition formation which respects the rules of network and coalition formation and the preferences of individuals, and (iv) to show that, although uncountably many networks may form, this endogenous process of network and coalition formation possesses a nonempty finite set of ergodic measures and generates a finite, disjoint collection of nonempty subsets of networks and coalitions, each constituting a basin of attraction. Moreover, we extend to the setting of endogenous Markov dynamics the notions of pairwise stability (Jackson-Wolinsky, 1996), strong stability (Jackson-van den Nouweland, 2005), and Nash stability (Bala-Goyal, 2000), and we show that in order for any network-coalition pair to be stable (pairwise, strong, or Nash) it is necessary and sufficient that the pair reside in one of finitely many basins of attraction - and hence reside in the support of an ergodic measure. The results we obtain here for endogenous network dynamics and stochastic basins of attraction are the dynamic analogs of our earlier results on endogenous network formation and strategic basins of attraction in static, abstract games of network formation (Page and Wooders, 2008), and build on the seminal contributions of Jackson and Watts (2002), Konishi and Ray (2003), and Dutta, Ghosal, and Ray (2005).
  • RePEc:inu:caeprp:2009-002
Language
  • English
Contributed by
OAIster

Get this edition

  • Set up My libraries

    How do I set up "My libraries"?

    In order to set up a list of libraries that you have access to, you must first login or sign up. Then set up a personal list of libraries from your profile page by clicking on your user name at the top right of any screen.

  • All (1)
  • Unknown (1)
None of your libraries hold this item.
None of your libraries hold this item.
None of your libraries hold this item.
None of your libraries hold this item.
None of your libraries hold this item.
None of your libraries hold this item.
None of your libraries hold this item.
None of your libraries hold this item.

User activity


e.g. test cricket, Perth (WA), "Parkes, Henry"

Separate different tags with a comma. To include a comma in your tag, surround the tag with double quotes.

Be the first to add a tag for this edition

Be the first to add this to a list

Comments and reviews

What are comments? Add a comment

No user comments or reviews for this version

Add a comment