English, Article, Journal or magazine article edition: Neural Networks for Cross-Sectional Employment Forecasts: A Comparison of Model Specifications for Germany Roberto Patuelli; Aura Reggiani; Peter Nijkamp; ...

User activity

Share to:
 
Bookmark: http://trove.nla.gov.au/version/201864
Physical Description
  • preprint
Language
  • English

Edition details

Title
  • Neural Networks for Cross-Sectional Employment Forecasts: A Comparison of Model Specifications for Germany
Author
  • Roberto Patuelli
  • Aura Reggiani
  • Peter Nijkamp
  • Norbert Schanne
Physical Description
  • preprint
Notes
  • In this paper, we present a review of various computational experiments – and consequent results – concerning Neural Network (NN) models developed for regional employment forecasting. NNs are widely used in several fields because of their flexible specification structure. Their utilization in studying/​predicting economic variables, such as employment or migration, is justified by the ability of NNs of learning from data, in other words, of finding functional relationships – by means of data – among the economic variables under analysis. A series of NN experiments is presented in the paper. Using two data sets on German NUTS 3 districts (326 and 113 labour market districts in the former West and East Germany, respectively), the results emerging from the implementation of various NN models – in order to forecast variations in full-time employment – are provided and discussed In our approach, single forecasts are computed by the models for each district. Different specifications of the NN models are first tested in terms of: (a) explanatory variables; and (b) NN structures. The average statistical results of simulated out-of-sample forecasts on different periods are summarized and commented on. In addition to variable and structure specification, the choice of NN learning parameters and internal functions is also critical to the success of NNs. Comprehensive testing of these parameters is, however, limited in the literature. A sensitivity analysis is therefore carried out and discussed, in order to evaluate different combinations of NN parameters. The paper concludes with methodological and empirical remarks, as well as with suggestions for future research.
  • neural networks, sensitivity analysis, employment forecasts, Germany
  • RePEc:lug:wpaper:0903
Language
  • English
Contributed by
OAIster

Get this edition

Other links

  • Set up My libraries

    How do I set up "My libraries"?

    In order to set up a list of libraries that you have access to, you must first login or sign up. Then set up a personal list of libraries from your profile page by clicking on your user name at the top right of any screen.

  • All (1)
  • Unknown (1)
None of your libraries hold this item.
None of your libraries hold this item.
None of your libraries hold this item.
None of your libraries hold this item.
None of your libraries hold this item.
None of your libraries hold this item.
None of your libraries hold this item.
None of your libraries hold this item.

User activity


e.g. test cricket, Perth (WA), "Parkes, Henry"

Separate different tags with a comma. To include a comma in your tag, surround the tag with double quotes.

Be the first to add a tag for this edition

Be the first to add this to a list

Comments and reviews

What are comments? Add a comment

No user comments or reviews for this version

Add a comment