Modelling event-related responses in the brain David, Olivier; Harrison, Lee; Friston, Karl

User activity

Share to:
View the summary of this work
Authors
David, Olivier ; Harrison, Lee ; Friston, Karl
Appears In
Neuroimage
Subjects
Neurosciences -- Models; Neural networks -- Models; [sdv:neu] life sciences/neurons and cognition
Audience
Academic
Summary
To link to full-text access for this article, visit this link: http://dx.doi.org/10.1016/j.neuroimage.2004.12.030 Byline: Olivier David, Lee Harrison, Karl J. Friston Keywords: Electroencephalography; Magnetoencephalography; Neural networks; Nonlinear dynamics; Causal modelling Abstract: The aim of this work was to investigate the mechanisms that shape evoked electroencephalographic (EEG) and magneto-encephalographic (MEG) responses. We used a neuronally plausible model to characterise the dependency of response components on the models parameters. This generative model was a neural mass model of hierarchically arranged areas using three kinds of inter-area connections (forward, backward and lateral). We investigated how responses, at each level of a cortical hierarchy, depended on the strength of connections or coupling. Our strategy was to systematically add connections and examine the responses of each successive architecture. We did this in the context of deterministic responses and then with stochastic spontaneous activity. Our aim was to show, in a simple way, how event-related dynamics depend on extrinsic connectivity. To emphasise the importance of nonlinear interactions, we tried to disambiguate the components of event-related potentials (ERPs) or event-related fields (ERFs) that can be explained by a linear superposition of trial-specific responses and those engendered nonlinearly (e.g., by phase-resetting). Our key conclusions were; (i) when forward connections, mediating bottom-up or extrinsic inputs, are sufficiently strong, nonlinear mechanisms cause a saturation of excitatory interneuron responses. This endows the system with an inherent stability that precludes nondissipative population dynamics. (ii) The duration of evoked transients increases with the hierarchical depth or level of processing. (iii) When backward connections are added, evoked transients become more protracted, exhibiting damped oscillations. These are formally identical to late or endogenous components seen empirically. This suggests that late components are mediated by reentrant dynamics within cortical hierarchies. (iv) Bilateral connections produce similar effects to backward connections but can also mediate zero-lag phase-locking among areas. (v) Finally, with spontaneous activity, ERPs/ERFs can arise from two distinct mechanisms: For low levels of (stimulus related and ongoing) activity, the systems response conforms to a quasi-linear superposition of separable responses to the fixed and stochastic inputs. This is consistent with classical assumptions that motivate trial averaging to suppress spontaneous activity and disclose the ERP/ERF. However, when activity is sufficiently high, there are nonlinear interactions between the fixed and stochastic inputs. This interaction is expressed as a phase-resetting and represents a qualitatively different explanation for the ERP/ERF. Author Affiliation: Wellcome Department of Imaging Neuroscience, Functional Imaging Laboratory, 12 Queen Square, London WC1N 3BG, UK Article History: Received 22 April 2004; Revised 30 September 2004; Accepted 14 December 2004
Bookmark
http://trove.nla.gov.au/work/188233
Work ID
188233

User activity


e.g. test cricket, Perth (WA), "Parkes, Henry"

Separate different tags with a comma. To include a comma in your tag, surround the tag with double quotes.

Be the first to add a tag for this work

Be the first to add this to a list

Comments and reviews

What are comments? Add a comment

No user comments or reviews for this work

Add a comment


Show comments and reviews from Amazon users