English, Article, Journal or magazine article edition: Pricing model performance and the two-pass cross-sectional regression methodology Raymond Kan; Cesare Robotti; Jay Shanken

User activity

Share to:
 
Bookmark: http://trove.nla.gov.au/version/161767
Physical Description
  • preprint
Language
  • English

Edition details

Title
  • Pricing model performance and the two-pass cross-sectional regression methodology
Author
  • Raymond Kan
  • Cesare Robotti
  • Jay Shanken
Physical Description
  • preprint
Notes
  • Since Black, Jensen, and Scholes (1972) and Fama and MacBeth (1973), the two-pass cross-sectional regression (CSR) methodology has become the most popular approach for estimating and testing asset pricing models. Statistical inference with this method is typically conducted under the assumption that the models are correctly specified, i.e., expected returns are exactly linear in asset betas. This can be a problem in practice since all models are, at best, approximations of reality and are likely to be subject to a certain degree of misspecification. We propose a general methodology for computing misspecification-robust asymptotic standard errors of the risk premia estimates. We also derive the asymptotic distribution of the sample CSR R2 and develop a test of whether two competing beta pricing models have the same population R2. This provides a formal alternative to the common heuristic of simply comparing the R2 estimates in evaluating relative model performance. Finally, we provide an empirical application which demonstrates the importance of our new results when applied to a variety of asset pricing models.
  • RePEc:nbr:nberwo:15047
  • Since Black, Jensen, and Scholes (1972) and Fama and MacBeth (1973), the two-pass cross-sectional regression (CSR) methodology has become the most popular approach for estimating and testing asset pricing models. Statistical inference with this method is typically conducted under the assumption that the models are correctly specified, that is, expected returns are exactly linear in asset betas. This assumption can be a problem in practice since all models are, at best, approximations of reality and are likely to be subject to a certain degree of misspecification. We propose a general methodology for computing misspecification-robust asymptotic standard errors of the risk premia estimates. We also derive the asymptotic distribution of the sample CSR R2 and develop a test of whether two competing linear beta pricing models have the same population R2. This test provides a formal alternative to the common heuristic of simply comparing the R2 estimates in evaluating relative model performance. Finally, we provide an empirical application, which demonstrates the importance of our new results when applied to a variety of asset pricing models.
  • Econometric models ; Asset pricing
  • RePEc:fip:fedawp:2009-11
Language
  • English
Contributed by
OAIster

Get this edition

Other links

  • Set up My libraries

    How do I set up "My libraries"?

    In order to set up a list of libraries that you have access to, you must first login or sign up. Then set up a personal list of libraries from your profile page by clicking on your user name at the top right of any screen.

  • All (1)
  • Unknown (1)
None of your libraries hold this item.
None of your libraries hold this item.
None of your libraries hold this item.
None of your libraries hold this item.
None of your libraries hold this item.
None of your libraries hold this item.
None of your libraries hold this item.
None of your libraries hold this item.

User activity


e.g. test cricket, Perth (WA), "Parkes, Henry"

Separate different tags with a comma. To include a comma in your tag, surround the tag with double quotes.

Be the first to add a tag for this edition

Be the first to add this to a list

Comments and reviews

What are comments? Add a comment

No user comments or reviews for this version

Add a comment