# English, Article, Journal or magazine article edition: Measures of fit in multiple correspondence analysis of crisp and fuzzy coded data Zerrin Asan; Michael Greenacre

#### User activity

##### Share to:

Bookmark: http://trove.nla.gov.au/version/154954
Physical Description
• preprint
Language
• English

### Edition details

Title
• Measures of fit in multiple correspondence analysis of crisp and fuzzy coded data
Author
• Zerrin Asan
• Michael Greenacre
Physical Description
• preprint
Notes
• When continuous data are coded to categorical variables, two types of coding are possible: crisp coding in the form of indicator, or dummy, variables with values either 0 or 1; or fuzzy coding where each observation is transformed to a set of “degrees of membership” between 0 and 1, using co-called membership functions. It is well known that the correspondence analysis of crisp coded data, namely multiple correspondence analysis, yields principal inertias (eigenvalues) that considerably underestimate the quality of the solution in a low-dimensional space. Since the crisp data only code the categories to which each individual case belongs, an alternative measure of fit is simply to count how well these categories are predicted by the solution. Another approach is to consider multiple correspondence analysis equivalently as the analysis of the Burt matrix (i.e., the matrix of all two-way cross-tabulations of the categorical variables), and then perform a joint correspondence analysis to fit just the off-diagonal tables of the Burt matrix – the measure of fit is then computed as the quality of explaining these tables only. The correspondence analysis of fuzzy coded data, called “fuzzy multiple correspondence analysis”, suffers from the same problem, albeit attenuated. Again, one can count how many correct predictions are made of the categories which have highest degree of membership. But here one can also defuzzify the results of the analysis to obtain estimated values of the original data, and then calculate a measure of fit in the familiar percentage form, thanks to the resultant orthogonal decomposition of variance. Furthermore, if one thinks of fuzzy multiple correspondence analysis as explaining the two-way associations between variables, a fuzzy Burt matrix can be computed and the same strategy as in the crisp case can be applied to analyse the off-diagonal part of this matrix. In this paper these alternative measures of fit are defined and applied to a data set of continuous meteorological variables, which are coded crisply and fuzzily into three categories. Measuring the fit is further discussed when the data set consists of a mixture of discrete and continuous variables.
• Data coding, defuzzification, fuzzy coding, indicator matrix, joint correspondence analysis, measure of fit, multiple correspondence analysis, Burt matrix
• RePEc:upf:upfgen:1077
Language
• English
Contributed by
OAIster

## Get this edition

• Set up My libraries

### How do I set up "My libraries"?

In order to set up a list of libraries that you have access to, you must first login or sign up. Then set up a personal list of libraries from your profile page by clicking on your user name at the top right of any screen.

• All (1)
• Unknown (1)
None of your libraries hold this item.
None of your libraries hold this item.
None of your libraries hold this item.
None of your libraries hold this item.
None of your libraries hold this item.
None of your libraries hold this item.
None of your libraries hold this item.
None of your libraries hold this item.

## User activity

#### Tags

What are tags? Add a tag

e.g. test cricket, Perth (WA), "Parkes, Henry"

Separate different tags with a comma. To include a comma in your tag, surround the tag with double quotes.

Be the first to add a tag for this edition