English, Article, Journal or magazine article edition: Handling class imbalance in customer churn prediction J. BUREZ; D. VAN DEN POEL

User activity

Share to:
 
Bookmark: http://trove.nla.gov.au/version/15216
Physical Description
  • preprint
Language
  • English

Edition details

Title
  • Handling class imbalance in customer churn prediction
Author
  • J. BUREZ
  • D. VAN DEN POEL
Physical Description
  • preprint
Notes
  • Customer churn is often a rare event in service industries, but of great interest and great value. Until recently, however, class imbalance has not received much attention in the context of data mining (Weiss, 2004). In this study, we investigate how we can better handle class imbalance in churn prediction. Using more appropriate evaluation metrics (AUC, lift), we investigated the increase in performance of sampling (both random and advanced under-sampling) and two specific modelling techniques (gradient boosting and weighted random forests) compared to some standard modelling techniques. AUC and lift prove to be good evaluation metrics. AUC does not depend on a threshold, and is therefore a better overall evaluation metric compared to accuracy. Lift is very much related to accuracy, but has the advantage of being well used in marketing practice (Ling and Li, 1998). Results show that under-sampling can lead to improved prediction accuracy, especially when evaluated with AUC. Unlike Ling and Li (1998), we find that there is no need to under-sample so that there are as many churners in your training set as non churners. Results show no increase in predictive performance when using the advanced sampling technique CUBE in this study. This is in line with findings of Japkowicz (2000), who noted that using sophisticated sampling techniques did not give any clear advantage. Weighted random forests, as a cost-sensitive learner, performs significantly better compared to random forests, and is therefore advised. It should, however always be compared to logistic regression. Boosting is a very robust classifier, but never outperforms any other technique.
  • rare events, class imbalance, undersampling, oversampling, boosting, random forests, CUBE, customer churn, classifier
  • RePEc:rug:rugwps:08/​517
Language
  • English
Contributed by
OAIster

Get this edition

Other links

  • Set up My libraries

    How do I set up "My libraries"?

    In order to set up a list of libraries that you have access to, you must first login or sign up. Then set up a personal list of libraries from your profile page by clicking on your user name at the top right of any screen.

  • All (1)
  • Unknown (1)
None of your libraries hold this item.
None of your libraries hold this item.
None of your libraries hold this item.
None of your libraries hold this item.
None of your libraries hold this item.
None of your libraries hold this item.
None of your libraries hold this item.
None of your libraries hold this item.

User activity


e.g. test cricket, Perth (WA), "Parkes, Henry"

Separate different tags with a comma. To include a comma in your tag, surround the tag with double quotes.

Be the first to add a tag for this edition

Be the first to add this to a list

Comments and reviews

What are comments? Add a comment

No user comments or reviews for this version

Add a comment