English, Article edition: SWARM INTELLIGENCE SYSTEMS USING GUIDED SELF-ORGANIZATION FOR COLLECTIVE PROBLEM SOLVING ALEJANDRO RODRÃGUEZ; ALEXANDER GRUSHIN; JAMES A. REGGIA

User activity

Share to:
 
Bookmark: http://trove.nla.gov.au/version/143633
Physical Description
  • article
Language
  • English

Edition details

Title
  • SWARM INTELLIGENCE SYSTEMS USING GUIDED SELF-ORGANIZATION FOR COLLECTIVE PROBLEM SOLVING
Author
  • ALEJANDRO RODRÃGUEZ
  • ALEXANDER GRUSHIN
  • JAMES A. REGGIA
Physical Description
  • article
Notes
  • Drawing inspiration from social interactions in nature, the field of swarm intelligence has presented a promising approach to the design of complex systems consisting of numerous, usually homogeneous, simple parts, to solve a wide variety of problems. Like cellular automata, swarm-intelligence systems involve highly parallel computations across space, based heavily on self-organization, the emergence of global behavior through local interactions of components, and the absence of centralized or global control. However, this has a disadvantage as the desired behavior of a system becomes hard to predict or design based on its local interaction rules. In our ongoing research, we propose to provide greater control over a system, and potentially more useful, goal-oriented behavior, by introducing layered, hierarchical controllers in the particles or components. The layered controllers allow each particle to extend their reactive behavior in a more goal-oriented style, while keeping the locality of the interactions and the general simplicity of the system. In this paper, we present three systems designed using this approach: a competitive foraging system, a system for the collective transport and distribution of goods, and a self-assembly system capable of creating complex structures in a 3D world. Our simulation results show that in all three cases it was possible to guide the self-organization process at different levels of the designated task, suggesting that the self-organizing behavior of swarm-intelligence systems may be extendable to support problem solving in various contexts, such as coordinated robotic teams.
  • Swarm intelligence, flocking, self-assembly, self-organization, collective transport
  • RePEc:wsi:acsxxx:v:10:y:2007:i:su:p:5-34
Language
  • English
Contributed by
OAIster

Get this edition

  • Set up My libraries

    How do I set up "My libraries"?

    In order to set up a list of libraries that you have access to, you must first login or sign up. Then set up a personal list of libraries from your profile page by clicking on your user name at the top right of any screen.

  • All (1)
  • Unknown (1)
None of your libraries hold this item.
None of your libraries hold this item.
None of your libraries hold this item.
None of your libraries hold this item.
None of your libraries hold this item.
None of your libraries hold this item.
None of your libraries hold this item.
None of your libraries hold this item.

User activity


e.g. test cricket, Perth (WA), "Parkes, Henry"

Separate different tags with a comma. To include a comma in your tag, surround the tag with double quotes.

Be the first to add a tag for this edition

Be the first to add this to a list

Comments and reviews

What are comments? Add a comment

No user comments or reviews for this version

Add a comment