English, Article edition: REDUCING FUZZY ALGEBRA TO CLASSICAL ALGEBRA ARTHUR WEINBERGER

User activity

Share to:
 
Bookmark: http://trove.nla.gov.au/version/133199
Physical Description
  • article
Language
  • English

Edition details

Title
  • REDUCING FUZZY ALGEBRA TO CLASSICAL ALGEBRA
Author
  • ARTHUR WEINBERGER
Physical Description
  • article
Notes
  • This paper presents three main ideas. They are the Metatheorem, the lattice embedding for sets, and the lattice embedding for algebras.The Metatheorem allows you to convert existing theorems about classical subsets into corresponding theorem about fuzzy subsets. The concept of a fuzzyfiable operation on a powerset is defined. The main result states that any implication or identity which can be stated using fuzzyfiable operations is true about fuzzy subsets if and only if it is true about classical subsets.The lattice embedding theorem for sets shows that for any set X, there is a set Y such that the lattice of fuzzy subsets of X is isomorphic to a sublattice of the classical subsets of Y. In fact it is further proved that if X is infinite, then we can choose Y =​ X and get the surprising result that the lattice of fuzzy subsets of X is isomorphic to a sublattice of the classical subsets of X itself. The idea is illustrated with an example explicitly showing how the lattice of fuzzy subsets of the closed unit interval ð =​ [0,1] embeds into the lattice of classical subsets of ð.The lattice embedding theorem for algebras shows that under certain circumstances the lattice of fuzzy subalgebras of an algebra A embeds into the lattice of classical subalgebras of a closely related algebra Aâ². The following sample use of this embeding theorem is given. It is a well known fact that the lattice of normal subgroups of a group is a modular lattice. The embeding theorem is used here to conclude that lattice of fuzzy normal subgroups of a group is a modular lattice too.
  • Fuzzy sets, fuzzy algebra, lattices, metatheory, universal algebra
  • RePEc:wsi:nmncxx:v:01:y:2005:i:01:p:27-64
Language
  • English
Contributed by
OAIster

Get this edition

  • Set up My libraries

    How do I set up "My libraries"?

    In order to set up a list of libraries that you have access to, you must first login or sign up. Then set up a personal list of libraries from your profile page by clicking on your user name at the top right of any screen.

  • All (1)
  • Unknown (1)
None of your libraries hold this item.
None of your libraries hold this item.
None of your libraries hold this item.
None of your libraries hold this item.
None of your libraries hold this item.
None of your libraries hold this item.
None of your libraries hold this item.
None of your libraries hold this item.

User activity


e.g. test cricket, Perth (WA), "Parkes, Henry"

Separate different tags with a comma. To include a comma in your tag, surround the tag with double quotes.

Be the first to add a tag for this edition

Be the first to add this to a list

Comments and reviews

What are comments? Add a comment

No user comments or reviews for this version

Add a comment