English, Article edition: EFFICIENT UNSUPERVISED MINING FROM NOISY CO-OCCURRENCE DATA HIROSHI MAMITSUKA

User activity

Share to:
 
Bookmark: http://trove.nla.gov.au/version/133044
Physical Description
  • article
Language
  • English

Edition details

Title
  • EFFICIENT UNSUPERVISED MINING FROM NOISY CO-OCCURRENCE DATA
Author
  • HIROSHI MAMITSUKA
Physical Description
  • article
Notes
  • We consider the problem of mining from noisy unsupervised data sets. The data point we call noise is an outlier in the current context of data mining, and it has been generally defined as the one locates in low probability regions of an input space. The purpose of the approach for this problem is to detect outliers and to perform efficient mining from noisy unsupervised data. We propose a new iterative sampling approach for this problem, using both model-based clustering and the likelihood given to each example by a trained probabilistic model for finding data points of such low probability regions in an input space. Our method uses an arbitrary probabilistic model as a component model and repeats two steps of sampling non-outliers with high likelihoods (computed by previously obtained models) and training the model with the selected examples alternately. In our experiments, we focused on two-mode and co-occurrence data and empirically evaluated the effectiveness of our proposed method, comparing with two other methods, by using both synthetic and real data sets. From the experiments using the synthetic data sets, we found that the significance level of the performance advantage of our method over the two other methods had more pronounced for higher noise ratios, for both medium- and large-sized data sets. From the experiments using a real noisy data set of proteinâprotein interactions, a typical co-occurrence data set, we further confirmed the performance of our method for detecting outliers from a given data set. Extended abstracts of parts of the work presented in this paper have appeared in Refs. 1 and 2.
  • Unsupervised learning, selective sampling, model-based clustering, co-occurrence data, proteinâprotein interactions
  • RePEc:wsi:nmncxx:v:01:y:2005:i:01:p:173-193
Language
  • English
Contributed by
OAIster

Get this edition

  • Set up My libraries

    How do I set up "My libraries"?

    In order to set up a list of libraries that you have access to, you must first login or sign up. Then set up a personal list of libraries from your profile page by clicking on your user name at the top right of any screen.

  • All (1)
  • Unknown (1)
None of your libraries hold this item.
None of your libraries hold this item.
None of your libraries hold this item.
None of your libraries hold this item.
None of your libraries hold this item.
None of your libraries hold this item.
None of your libraries hold this item.
None of your libraries hold this item.

User activity


e.g. test cricket, Perth (WA), "Parkes, Henry"

Separate different tags with a comma. To include a comma in your tag, surround the tag with double quotes.

Be the first to add a tag for this edition

Be the first to add this to a list

Comments and reviews

What are comments? Add a comment

No user comments or reviews for this version

Add a comment